Capability of Nilpotent Lie Algebras of Small Dimension
نویسندگان
چکیده
Given a nilpotent Lie algebra L of dimension $$\le 6$$ on an arbitrary field characteristic $$\ne 2$$ , we show direct method to detect whether is capable or not via computations the size its nonabelian exterior square $$L \wedge L$$ . For dimensions higher than 6, result general nature, based evidences low dimensional case, but also large families algebras, namely generalized Heisenberg algebras. Indeed, capability Schur multiplier $$M(L/Z^\wedge (L))$$ $$L/Z^\wedge (L)$$ where $$Z^\wedge denotes center L.
منابع مشابه
Nilpotent metric Lie algebras of small dimension
In [KO2] we developed a general classification scheme for metric Lie algebras, i.e. for finite-dimensional Lie algebras equipped with a non-degenerate invariant inner product. Here we determine all nilpotent Lie algebras l with dim l = 2 which are used in this scheme. Furthermore, we classify all nilpotent metric Lie algebras of dimension at most 10.
متن کاملBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملLie algebras of small dimension
We present a list of all isomorphism classes of nonsolvable Lie algebras of dimension ≤ 6 over a finite field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Iranian Mathematical Society
سال: 2021
ISSN: ['1018-6301', '1735-8515']
DOI: https://doi.org/10.1007/s41980-021-00571-1